Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 23(1): 12, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247972

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is characterized by repetitive behaviors, deficits in communication, and overall impaired social interaction. Of all the integrin subunit mutations, mutations in integrin ß3 (Itgb3) may be the most closely associated with ASD. Integrin ß3 is required for normal structural plasticity of dendrites and synapses specifically in excitatory cortical and hippocampal circuitry. However, the behavioral consequences of Itgb3 function in the forebrain have not been assessed. We tested the hypothesis that behaviors that are typically abnormal in ASD-such as self-grooming and sociability behaviors-are disrupted with conditional Itgb3 loss of function in forebrain circuitry in male and female mice. METHODS: We generated male and female conditional knockouts (cKO) and conditional heterozygotes (cHET) of Itgb3 in excitatory neurons and glia that were derived from Emx1-expressing forebrain cells during development. We used several different assays to determine whether male and female cKO and cHET mice have repetitive self-grooming behaviors, anxiety-like behaviors, abnormal locomotion, compulsive-like behaviors, or abnormal social behaviors, when compared to male and female wildtype (WT) mice. RESULTS: Our findings indicate that only self-grooming and sociability are altered in cKO, but not cHET or WT mice, suggesting that Itgb3 is specifically required in forebrain Emx1-expressing cells for normal repetitive self-grooming and social behaviors. Furthermore, in cKO (but not cHET or WT), we observed an interaction effect for sex and self-grooming environment and an interaction effect for sex and sociability test chamber. LIMITATIONS: While this study demonstrated a role for forebrain Itgb3 in specific repetitive and social behaviors, it was unable to determine whether forebrain Itgb3 is required for a preference for social novelty, whether cHET are haploinsufficient with respect to repetitive self-grooming and social behaviors, or the nature of the interaction effect for sex and environment/chamber in affected behaviors of cKO. CONCLUSIONS: Together, these findings strengthen the idea that Itgb3 has a specific role in shaping forebrain circuitry that is relevant to endophenotypes of autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Asseio Animal/fisiologia , Integrina beta3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prosencéfalo , Comportamento Social
2.
Neurobiol Dis ; 150: 105253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421563

RESUMO

Fragile X syndrome (FXS) is the most common form of intellectual disability that arises from the dysfunction of a single gene-Fmr1. The main neuroanatomical correlate of FXS is elevated dendritic spine density on cortical pyramidal neurons, which has been modeled in Fmr1-/Y mice. However, the cell-autonomous contribution of Fmr1 on cortical dendritic spine density has not been assessed. Even less is known about the role of Fmr1 in heterozygous female mosaic mice, which are a putative model for human Fmr1 full mutation carriers (i.e., are heterozygous for the full Fmr1-silencing mutation). In this neuroanatomical study, spine density in cortical pyramidal neurons of Fmr1+/- and Fmr1-/Y mice was studied at multiple subcellular compartments, layers, and brain regions. Spine density in Fmr1+/- mice is higher than WT but lower than Fmr1-/Y. Not all subcellular compartments in layer V Fmr1+/- and Fmr1-/Y cortical pyramidal neurons are equally affected: the apical dendrite, a key subcellular compartment, is principally affected over basal dendrites. Within apical dendrites, spine density is differentially affected across branch orders. Finally, identification of FMRP-positive and FMRP-negative neurons within Fmr1+/- permitted the study of the cell-autonomous effect of Fmr1 on spine density. Surprisingly, layer V cortical pyramidal spine density between FMRP-positive and FMRP-negative neurons does not differ, suggesting that the regulation of the primary neuroanatomical defect of FXS-elevated spine density-is non-cell-autonomous.


Assuntos
Espinhas Dendríticas/ultraestrutura , Proteína do X Frágil da Deficiência Intelectual/genética , Células Piramidais/ultraestrutura , Animais , Córtex Cerebral/citologia , Córtex Cerebral/ultraestrutura , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Mosaicismo , Inativação do Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...